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It is shown that three-dimensional patterns dominated by triplet interactions in the vicinity
of a symmetry-breaking bifurcation point acquire rigidity owing to resonant interactions between
constituent modes. Phase equations determining the response of octahedral, tetrahedral, and icosa-
hedral structures to long-scale perturbations are derived and analyzed. The nonisotropic long-scale
response spectrum is universal, being dependent on the crystalline structure only. It is shown that
the resonance condition causes confinement of dislocations in a number of constituent modes to a
common dislocation line. The phase equations are applied to compute the far field structure of the

dislocations.

PACS number(s): 05.70.Fh, 47.20.Ky, 61.50.Em

I. INTRODUCTION

Symmetry-breaking transitions from a homogeneous to
a patterned or crystalline state in both equilibrium and
nonequilibrium systems can be described within a com-
mon framework as long as possible nonpotential effects
far from equilibrium are suppressed (as they usually are
in the vicinity of a primary symmetry-breaking bifurca-
tion point). This common ground is provided by the
Landau mean field theory [1] describing the state of bro-
ken symmetry as a superposition of a number of excited
modes that appear formally as degenerate neutrally sta-
ble eigenmodes of linearized macroscopic equations, and
may admit, in various contexts, different physical inter-
pretations (e.g., density waves in the equilibrium theory).

Since a symmetry-breaking transition in an isotropic
system implies a preferred wavelength but no preferred
direction, an indefinite number of modes may be excited,
with the wave vectors k; having the same absolute value
(that can be taken as unity) but arbitrary direction. The
emerging pattern or crystalline structure is selected by
nonlinear interactions. Landau [1] was the first to no-
tice a special role of lowest-order (triplet) interactions
among modes forming an equilateral triangle. These in-
teractions are resonant, i.e., phase dependent, and cause
the phases of the interacting modes to be locked in such
a way that the interaction is destabilizing. Unless for-
bidden by symmetry, resonant interactions are prevalent
sufficiently close to a symmetry-breaking transition, and
are responsible for its subcritical (first-order) character.

In a two-dimensional setting (most common in non-
equilibrium systems), triplet interactions favor a hexag-
onal pattern, which is selected, in a generic case, suffi-
ciently close to the bifurcation point. In three dimen-
sions, triplet interactions favor a combination of modes
forming one of the regular polyhedra with triangular
faces—tetrahedron, octahedron, or icosahedron [2]. The
former two correspond to the face-centered and body-
centered cubic crystal lattices, and the latter to a qua-
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sicrystalline structure.

The firm ground of the theory sketched above ends
when we approach the question of distortions of regular
structures formed due to resonant interactions. Distorted
patterns can be described (following the approach com-
mon in the theory of nonequilibrium symmetry-breaking
transitions [3]) by adding to the Landau energy “kinetic”
terms involving spatial derivatives of the amplitudes, and
accounting for the dependence of energy on the wave
number. An immediate problem is that such terms are
strongly anisotropic for each particular mode, since the
wave number is influenced, in the leading order, only by
perturbations directed along the corresponding wave vec-
tor. The resulting lack of “rigidity” in the transverse
direction is usually remedied [3] by introducing terms
containing higher-order derivatives.

The aim of this communication is to describe long-
scale deformations and dislocations in three-dimensional
structures, or resonant crystals dominated by triplet in-
teractions. We shall see that an additional rigidity con-
tributed by resonant interactions makes terms containing
higher-order transverse derivatives superfluous, and com-
pute explicitly eigenvalues characterizing an anisotropic
response of a resonant crystal to long-scale perturbations.
Another resonant effect, which has been described be-
fore for two-dimensional patterns [4,5], but leads to a far
larger variety of structures in three dimensions, is the
confinement of dislocations in interacting modes.

II. AMPLITUDE EQUATIONS

A standard analysis in the vicinity of a symmetry-
breaking transition is based on the Landau expansion
of the interaction potential

N
V = —ﬂZaja; —_ Za,-ajak =+ Z VijklQ;Q;AEa] R
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where the summation is carried out over all closed poly-
gons formed by the wave vectors of extant modes. Pre-
senting the complex amplitudes in the polar form a; =
p; exp(if;) reduces Eq. (1) to

N
V=-u Z P — Z Pip;Pr €08 Oyji
i=1

+ Z VijklPiPjPrPL COS Ojt + - -+, (2)

where O;jr = 0; + 0; + 0, and ©;;z; are sums of phases
around the respective triangles or rhombi. The homo-
geneous state is linearly unstable when the coefficient at
the quadratic term p is positive. The cubic interaction
is universal, and therefore all cubic terms come with the
same coefficient that can be taken as unity. The cubic
terms are phase dependent, and the potential is at mini-
mum when the sum of phases of modes forming an equi-
lateral triangle is zero (modulo 27r). When phases adjust
in this way, the triplet interactions are destabilizing; this
is the reason why symmetry-breaking transitions lead-
ing to the formation of stationary patterns are always
subcritical and of the first order. The emerging pattern
is stabilized by quatric terms, which depend on angles
between interacting modes and are specific for particu-
lar systems. The quatric terms are phase dependent only
when the rhombus formed by the respective wave vectors
is nonplanar.

Structures distorted on a scale far exceeding the basic
wavelength can be described by allowing for amplitude
modulation on an extended scale. The appropriate form
of the energy functional (retaining the leading terms due
to extensional modulations only) is

N
£ = / Sk V)ai(k; - V)a; + V| dx,  (3)

j=1

where the potential V is defined by Eq. (1). The evolu-
tion equations can be derived from Eq. (3) assuming the
gradient dynamics

Oa; 0E _ 9 .__G_K
_c‘)?__ga—;—(k’ V)*a; da;’ (4)

The evolution equations can be formally derived through
the usual scheme of small-amplitude expansion near a
symmetry-breaking bifurcation point if the coefficient
defining the strength of triplet interactions is of O(e), so
that destabilizing resonant triplet interactions are bal-
anced by quadruplet interactions when a; = O(€). Both
the energy functional (3) and the evolution equation (4)
are valid at distances large compared to unity (i.e., to
the basic characteristic scale of the pattern); therefore x
has to be understood here as an extended coordinate, so
that the spatial derivatives are scaled as V = O(e).

The amplitude equations in this form were originally
used for the analysis of modulated hexagonal patterns [6)].
In some later works, the simple differential term was re-

placed by Newell-Whitehead-Segel (NWS) operators [3]
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2
of the type (e%j - % 8%’?)
coordinates directed, respectively, along and across the
wave vector k;, and scaled as 8/9z; = O(e), 8/8y; =
O(+/€). When resonant interactions are absent, a shorter
characteristic scale for the transverse coordinate is nec-
essary to prevent discontinuities in the transverse direc-
tions. Resonant interactions make, however, terms with
higher-order transverse derivatives superfluous, since dis-
continuities in any constitutive mode would violate the
constraint on the sum of phases ©;;, and therefore must
be suppressed. This has been demonstrated recently in a
study of defects in hexagonal patterns [5] where smooth
solutions were obtained using the amplitude equation in
the form (4). In the following, I shall apply this equation
to distorted three-dimensional resonant crystals.

, where z; and y; are extended

III. RIGIDITY OF A RESONANT STRUCTURE

Any single mode obeying Eq. (4) would suffer a zigzag
instability if resonant interaction terms were absent. Due
to the triplet interactions, different modes are, however,
tied up by resonant conditions that force the sum of
phases to be zero (modulo 27). If each interacting mode
is identified with an edge (pq) directed from the pth to
the gth vertex of a polyhedron, the resonance condition is
satisfied automatically by presenting the respective am-
plitude as a,q = byby. The corresponding phase is ex-
pressed as fpq = 04 — 6,. Clearly, the phases sum up to
zero around any closed polygon.

The phases 0, associated with vertices correspond to
translational degrees of freedom of the crystal. The oc-
tahedral and tetrahedral structures in the k space both
contain six modes and their complex conjugates; in each
case (constraining the field to be real), there are exactly
three translational modes corresponding to the phases
associated with three nonantipodal vertices of the octa-
hedron, or with four vertices of the tetrahedron, minus an
irrelevant constant shift of all four phases. The 15-mode
structure forming an icosahedron in the k space has six
arbitrary phases, and their shift causes a restructuring of
a quasicrystalline structure that cannot be reduced to a
mere translation.

In the following, I shall consider perturbations of the
translational modes that occur on a scale large compared
to the characteristic scale of Eq. (4). The phase equations
valid on the extended scale are derived by presenting the
complex amplitudes in the polar form, separating the real
and imaginary parts, and rescaling the coordinates by an-
other small factor, say, . For a pattern with a prevailing
“optimal” wavelength (|k| = 1) and equal amplitudes of
all modes in the undistorted state, the long-scale phase
equations derived in this way are

36 )
—a;ﬂ = 6%(kpq - V)?0pg — ) _ sin Op,
+ Z Vpgrs SiN Opgy,. (5)

Here the modes are marked by the respective vertices as
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stated above, and Opq, = Opq + 0gr + 0,p, Opgrs are sums
of phases around the appropriate triangles or rhombi; the
constant undistorted amplitude is rescaled to unity.

Under conditions when the triplet interactions are pre-
vailing, the total phases O, relax to zero on the O(1)
time scale; at longer times, these phase combinations re-
main of O(62). The residual phases are not necessar-
ily reducible to differences between the vertex phases.
They can be, however, eliminated by summing up Eq. (5)
around each vertex. In this sum, each polygon appears
twice, being traversed in opposite directions, and there-
fore the corresponding phases cancel. In this way, one ob-
tains the evolution equations for the translational phases
6, valid on an extended time scale T = §~2¢:

gf nbp — qu = Z (Lo = 1g) - V]2 (0p — 0q).

(pg) (ra)
(6)

where the summation is carried over all n edges converg-
ing at a particular vertex, and I, are vertex positions
defining the wave vectors k,q = I — l,,. The response to
long-scale perturbations is determined by the eigenvalues
of Eq. (6). Generally, the response is nonisotropic, and
the eigenfunctions mix stretching, bending, and twisting
modes. The sum of the eigenvalues is, however, isotropic
for all regular structures.

For the octahedron, Eq. (6) can be rewritten in an ex-
plicit form after taking into account that, due to the re-
ality condition, the phases associated with opposite ver-
tices are antisymmetric. This cancels the off-diagonal
terms in the left-hand side of Eq. (6). Using the Carte-
sian frame spanned by the vectors I, yields

90, 1<~ 0%,

P _ :
or 4 = oz;,

10 O
2(9(1,‘;, & axk

, p=123. (7)

If the phase perturbations are presented as 6,
exp(iq - x), the eigenvalues of Eq. (7), or, generally, of
Eq. (6), can be interpreted as phase diffusivities measur-
ing the rate of relaxation to the regular structure. The
number of eigenvalues—3—corresponds to the number
of independent elastic moduli of a structure with cubic
symmetry. The dependence of the “leading” eigenvalue A
(that with the smallest absolute value) on the direction of
the perturbation wave vector is shown in Fig. 1(a). The
structure is most rigid in the direction of vertices, where
the leading eigenvalue is twice degenerate, and has the
maximal absolute value |A| = 1. A lower local maximum
with |A| = %, again doubly degenerate, is observed in the
directions pointing to the centers of faces. The softest
response (|A| = %) is in the midedge direction. At all
extremal points (but not in other directions) the eigen-
functions corresponding to the leading eigenvalue are di-
vergenceless, i.e., do not contain a stretching component.

For the tetrahedron, the number of variables in Eq. (6)
can be reduced by 1 by introducing the Cartesian phase
vector ® = 37 1,0,. The dependence of the leading
eigenvalue on the direction of the perturbation wave vec-
tor is plotted in Fig. 1(b) using the polar coordinate sys-

L. M. PISMEN 50

FIG. 1. The dependence of the leading eigenvalue A on the
direction of the perturbation wave vector (parametrized by
spherical angles 8, ¢) for the octahedral (a), tetrahedral (b),
and icosahedral (c) structures.
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tem with one of the vertices at the north pole. The pro-
file is remarkably similar to the octahedral case, even
though the identification of soft and rigid directions with
the k-space structure is different. The structure is most
rigid (J]A| = %) in six midedge directions, and most soft
(|A] = %) in twelve directions lying on the equatorial cir-
cle associated with each vertex at meridional positions
¢ = (2k + 1)7/3, k = 0,...,5. Local maxima with
Al = % are observed at eight directions pointing to the
vertices and their antipodal points (the eigenvalues are
degenerate there). The number of extrema, the degen-
eracy, and even the values of A are the same as for the
octahedral structure, and the eigenfunctions correspond-
ing to the leading eigenvalue are again divergenceless at
the extremal points.

The Cartesian form of the phase equation (6) for the
tetrahedral structure is, of course, not symmetric. A
symmetric equation can be obtained by retaining all
four phases and introducing four differential operators
8, = Il,- 'V associated with the four vertices. Since one of
the phases is superfluous, one can impose the gauge con-
dition Ep 0, = 0; with this choice, the left-hand side of
Eq. (6) becomes diagonal. Using the identity Zp 0, =0,
Eq. (6) is presented in the form

a, 1., 1 2 1 2
ﬁ:z(aﬁzgak)o,,_z;(ap—ak) O,

p=1,...,4. (8)

Alternative forms of this equation can be obtained by
applying again the above gauge condition.

For the icosahedral structure, the explicit form of
Eq. (6) is too long to be reproduced here. Computa-
tion shows that this structure, similar to the octahedral
one, is most rigid (|A| = 0.105146) in the direction of
vertices, and most soft (JA\| = 0.067281) in the midedge
directions. A representative part of the relief of the lead-
ing eigenvalue is shown in Fig. 1(c).

In two dimensions, applying the same procedure to the
hexagonal structure formed by a single equilateral trian-
gle in k space shows that the response is isotropic, with
the leading eigenvalue |\| = ;11. The corresponding three-
dimensional prismatic structure lacks, however, rigidity
altogether in the third dimension.

IV. CONFINEMENT OF DISLOCATIONS

Equation (6) can be applied to the study of the far
field structure of dislocations in resonant crystals. It is
known that in two dimensions dislocations of opposite
signs in any two modes of the resonant triplet tend to
bind together, thereby insuring that the resonance condi-
tion be satisfied [4]. This localized structure corresponds
to a penta-hepta defect in the hexagonal pattern. The
far field structure of this defect is not quite simple, and
lacks the circular symmetry of the phase field of a free
defect [5].

A similar confinement of dislocations in constituent
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modes occurs in three dimensions. It is easy to see that
circulation of a vertex phase around any axis does not
violate the resonance conditions. At the same time, this
circulation generates a dislocation in all modes connected
to this vertex. We conclude that dislocations in three,
four, or five modes, respectively, in the tetrahedral, oc-
tahedral, and icosahedral structures, should be confined
to a common dislocation line.

The algebra of dislocations follows immediately from
the structure of the k-space polyhedra. Geometrically,
combinations of different dislocations can be understood
by associating with each edge an arrow pointing, say,
from the vertex when the respective vertex phase has
a positive circulation, and towards the vertex when the
circulation is negative. The mode corresponding to a
directed edge acquires a topological charge. If there is
circulation of more than one vertex phase, oppositely di-
rected arrows cancel, while those directed in the same
way add up to double the charge.

For the octahedral structure, one can see following the
above rules and taking into account the reality condition
that a collision of dislocations associated with any two
different vertices should, irrespective of their signs, dou-
ble the topological charge of some modes. In the tetrahe-
dral case, dislocations associated with two vertices, being
combined, give a structure identical to that formed by
combining the dislocations associated with the other two
vertices.

The far field deformation induced by a dislocation
line is computed most easily for the octahedral struc-
ture where Eq. (7) applies. A simple static solution of
this equation, corresponding to a screw dislocation line
along the z axis, is

ongy:(]y 92=¢7 (9)

where the vertex phases 6, are marked by the respective
coordinate axes, and ¢ is the polar angle around the z
axis. The phase gradients are singular on the disloca-
tion line where the amplitudes of modes carrying phase
circulation must vanish.

Another static solution, corresponding to an edge dis-
location line along the z axis with the Burgers vector di-
rected along the z axis, lacks circular symmetry. Though
no closed solution is found in this case, the phase field
can be expressed in the form of a Fourier series

0, =¢+ %sin2¢—— Elasin4¢— ﬁsin6¢+---,
9y=—%cos2¢+1—108-cos6¢+---, 6. =0. (10)
The series is converging rapidly, and, beyond the
quadrupole term, higher harmonics are negligible. For
the tetrahedral structure, the far field of both edge and
screw dislocation lines is nonisotropic.

V. CONCLUSIONS

Equations (7) and (8) can be viewed as the simplest
macroscopic models of deformations and dislocations in a
crystalline solid. One can also consider conservative ver-
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sions of these equations with the second rather than first
time derivative in the left-hand side. The latter model
replaces the gradient relaxation by an elastic response,
and the eigenvalues computed above are reinterpreted as
elastic constants.

Although the phase models are macroscopic and con-
tinuous, they reflect the anisotropy of the underlying
crystalline structure. It is notable that the rigidity of the
structure in both gradient and conservative models is a
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consequence of resonant interactions only, as any mode
by itself is not resistant to bending.

The long-scale response is universal, being dependent
on the crystalline structure only, and insensitive to spe-
cific values of mode interaction coefficients v;jr;. The
latter, of course, determine the choice of the structure in
the first place; they should also influence the spectrum
on shorter wavelengths when changes of real amplitudes
become significant.
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FIG. 1. The dependence of the leading eigenvalue A on the
direction of the perturbation wave vector (parametrized by
spherical angles 8, ¢) for the octahedral (a), tetrahedral (b),
and icosahedral (c) structures.



